Controlling subnanometer gaps in plasmonic dimers using graphene.
نویسندگان
چکیده
Graphene is used as the thinnest possible spacer between gold nanoparticles and a gold substrate. This creates a robust, repeatable, and stable subnanometer gap for massive plasmonic field enhancements. White light spectroscopy of single 80 nm gold nanoparticles reveals plasmonic coupling between the particle and its image within the gold substrate. While for a single graphene layer, spectral doublets from coupled dimer modes are observed shifted into the near-infrared, these disappear for increasing numbers of layers. These doublets arise from charger-transfer-sensitive gap plasmons, allowing optical measurement to access out-of-plane conductivity in such layered systems. Gating the graphene can thus directly produce plasmon tuning.
منابع مشابه
Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps
متن کامل
Tunneling Plasmonics in Bilayer Graphene.
We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latte...
متن کاملDual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies
In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...
متن کاملUltrahigh field enhancement and photoresponse in atomically separated arrays of plasmonic dimers.
Combining oblique angle deposition with standard graphene transfer protocols, two planar arrays of metal nanoparticles are fabricated that are vertically separated by atomic dimensions, corresponding precisely to the thickness of a single layer of graphene, i.e., 0.34 nm. Upon illumination of light at an appropriate wavelength, the local electromagnetic field at the junction of the dimers can b...
متن کاملInfrared Topological Plasmons in Graphene.
We propose a two-dimensional plasmonic platform-periodically patterned monolayer graphene-which hosts topological one-way edge states operable up to infrared frequencies. We classify the band topology of this plasmonic system under time-reversal-symmetry breaking induced by a static magnetic field. At finite doping, the system supports topologically nontrivial band gaps with mid-gap frequencies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 13 11 شماره
صفحات -
تاریخ انتشار 2013